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Chapter 14

Fermionic Hubbard model

14.1 Strongly correlated electron systems and
the Hubbard model

Hubbard model is commonly used to describe strongly correlated electron sys-
tems especially in transition metals and transition metal oxides. These classes
of materials include magnetic and non-magnetic Mott insulators, high temper-
ature superconductors. Transition elements occupy three rows of the periodic
table, extending from the alkali earths (Ca, Sr, Ba) to the noble metals (Cu, Ag,
Au). The electronic d-shell is completely empty in the alkali earths and com-
pletely filled in the noble metals. Properties of all these materials are strongly
dominated by the d-electrons. When electrons on the Fermi surface originate
from the d orbitals, the tight-binding approximation provides a better model
of the kinetic energy of electrons. Strongly localized character of d-orbitals im-
plies that interactions between electrons on the same ion are much larger than
interactions of electrons on different ions. This naturally leads to the effective
model [2, 4, 26, 17]

H = −t
∑
〈ij〉σ

c†iσcjσ + U
∑
i

ni↑ ni↓ − µ
∑
i

ni (14.1)

Here niσ = c†iσ ciσ and ni = ni↑ + ni↓.
Soon after the discovery of high temperature superconductivity in cuprate

materials P.W. Anderson pointed out the importance of repulsive interactions
in these materials[3]. A simple Hubbard model correctly captures the insulat-
ing behavior of the parent compounds. Whether it captures high temperature
superconductivity is still a subject of debate. During the last few decades anal-
ysis of the Hubbard model has been one of the mast active research areas in
condensed matter physics. Hubbard model (and its extensions) is also used to
describe organic materials[1].
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4 CHAPTER 14. FERMIONIC HUBBARD MODEL

Figure 14.1: Derivation of the effective Heisenberg model from the Hubbard
model. Electrons in a singlet configuration can regain some kinetic energy by
doing virtual tunneling into doubly occupied configurations. Factors of 2 arise
because tunneling processes can proceed in two ways (left to right and back or
vice versa).

Figure 14.2: Derivation of the effective Heisenberg model from the Hubbard
model. Electrons in a triplet configuration can not regain kinetic energy from
virtual tunneling into doubly occupied configurations.

14.2 Antiferromagnetism in the Hubbard model

14.2.1 Strong coupling. Heisenberg model

We consider strong coupling limit of the Hubbard model (U >> t) at half-
filling (〈n〉 = 1). When t = 0 all states that have exactly one fermion per
site correspond to the degenerate manifold of the ground states. In order to lift
this massive degeneracy we consider effects of fluctuations induced by the kinetic
energy in the leading order in t/U . In an expansion in t

U we integrate out virtual
transitions into intermediate states in which one site becomes doubly occupied.
This intermediate states have an energy U above that of the degenerate ground
states. This procedure can be seen already in an example of two fermions in
two sites in figs. 14.1, 14.2. A state with two spins in a singlet configuration
can gain kinetic energy by tunneling virtually to states with double occuancies.
We compare processes shown in figs. 14.1, 14.2. to an effective Heisenberg
Hamiltonian

H = J ~S1
~S2 (14.2)

and obtain

J =
4t2

U
(14.3)

By extending this analysis to an array of sites we obtain a Heisenberg model

H = J
∑
〈ij〉

~Si ~Sj (14.4)
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In this chapter we will only consider fermionic Hubbard model on cubic
lattices in d=2, 3, where the ground state has a character of the classical an-
tiferromagnetic state. In d=1 exact theorems forbid the existence of the long
range order. In this case the ground state can be obtained from the Bethe ansatz
solution. In higher dimensions but on non bi-partite lattices, such as a trian-
gular lattice, Hubbard models may exhibit exotic spin-liquid types of ground
states even at filling factor one[16, 14].

14.2.2 Weak coupling

We can also study antiferromagnetic instability from the side of weak interac-
tions. When U = 0

H =
∑
kσ

εkc
†
kσckσ

εk = −2t(cos kx + cos ky)− µ (14.5)

In the Hamiltonian (14.5) we took d = 2 and set lattice constant to one. At
half-filling µ = 0 and the Fermi surface is a perfect square. Using RPA we can
calculate the spin-spin correlation function (see discussion in Chapter 12).

χs(q, ω) =
χ0(q, ω)

1− Uχ0(q, ω)

χ0(q, ω) =
∫

d2k

(2π)2
nk+q − nk

ω − (εk+q − εk) + i0
(14.6)

At half-filling the Fermi surface has a nesting property. There exists nesting
vector Q = (π, π) which connects opposite sides of the Fermi sea (see fig. 14.3).
When q approaches the nesting vector Q

χ0(~q, ω = 0) ∼ ν(0) log
1

|~q − ~Q|
(14.7)

Analogously there is divergence as we lower the temperature

χ0( ~Q, ω = 0, T ) =
1

2π2t
log2

(
16eγ

π

t

T

)
+ C0 (14.8)

where C0 ≈ −0.0166. These specific numbers are for for d = 2[24]. However
analogous divergence exists in d = 3 as well. This means that for any finite
U > 0 there is instability to the AF state. The normal state is unstable and
the true ground state is the one with a static antiferromagnetic order. From
equation (14.8) we find

TN =
16eγ

π
t exp

(
−
√

2π(
t

U
− C0)1/2

)
(14.9)

To understand AF state we can do mean-field Hartree-Fock analysis with 〈Szi 〉 =
(−)iN0. This corresponds to taking

Uni↑ni↓ → U〈ni↑〉ni↓ + Uni↑ 〈ni↓〉 − U〈ni↑〉〈ni↓〉 (14.10)
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Figure 14.3: Brillouin zone for a square lattice. Diamond shows a Fermi surface
at half-filling for non-interacting fermions. This Fermi surface has substantial
parallel segments. This is the so-called nesting property.

Self-consistency equations for N0 need to be solved.

14.2.3 Phase diagram at half-filling

By combining results of the two previous subsections we obtain a phase diagram
in fig. 14.4. Note that while there is a maximum in the transition temperature,
there is no maximum in the entropy at the transition point.

14.3 Away from half-filling

14.3.1 Attraction between holes

Motion of a hole in an antiferromagnetic background creates a string of flipped
spins (see fig. 14.5). Thus we find effective attraction between holes. This
suggests the possibility of pairing. To understand the character of pairing we
consider a single plaquette as shown in fig. 14.6 [20]. For large U the largest real
space amplitude in the four particle ground state are for the Neel configuration

|Φa〉 = c†1↑ c
†
2↓ c
†
3↑ c
†
4↓ |0〉

|Φb〉 = c†1↓ c
†
2↑ c
†
3↓c
†
4↑ |0〉 (14.11)

Now let us consider the ground state for two particles. When U = 0 we have

|Ψ̃2〉 = (c†1↑ + c†2↑ + c†3↑ + c†4↑) (c†1↓ + c†2↓ + c†3↓ + c†4↓) |0〉 (14.12)
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Figure 14.4: Phase diagram of the half-filled Hubbard model

Figure 14.5: As holes separate they make a line of flipped spins. This increases
the magnetic energy of the system. This ”magnetic string” formation leads to
an effective attraction between holes.

For large U we need to multiply |Ψ̃2〉 by a projection operator that remives
double occupancies

|Ψ2〉 =
(
c†1↑c

†
2↓ + c†1↑c

†
3↓ + · · ·

)
|0〉 (14.13)

We can now ask what is the operator that creates |Ψ2〉 out of |Φa〉 and |Φb〉.
We consider s and d-wave operaotrs defined in figures ??. Simple calculation
shows that

〈Ψ2|∆d |Φ{a,b}〉 6= 0
〈Ψ2|∆s |Φ{a,b}〉 = 0 (14.14)

This suggests that we should find d-wave pairing. One can define a pair-binding
energy in one plaquette

∆bind = 2Eg(N = 3)− Eg(N = 4)− Eg(N = 2) (14.15)

here Eg(N) is the energy of the ground state in a plaquette with N fermions.
Figure 14.9 shows pair binding energy as a function of U/t.
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Figure 14.6: A four site plaquette

Figure 14.7: S-wave pairing operator defined on a plaquette

14.3.2 d-wave pairing mediated by paramagnon exchange

There is another way to think about pairing of holes in the background of strong
magnetic fluctuations. Let us go back to conventional BCS mechanism super-
conductivity first. Phonon mediated pairing can be viewed the following way:
Suppose we have an electron in a crystal of ions. This electron will attract pos-
itive ions and create a screening cloud of positive charges in the vicinity. After
the electron moves on, the ions remain displaced from their original unpolarized
state for some time due to their heavy mass. While the lattice is still partially
polarized, a second electron can be attracted to the polarization cloud of ions
and the energy of the system can be lowered. In this way an effective attraction
is generated between electrons. Note that such interaction is retarded in time,
which is important for the BCS theory. Retarded character of the lattice medi-
ated attraction allows it to overcome the direct electron-electron repulsion[22].

A similar phenomenon can take place in an interacting electron system in
the absence of phonons. The only difference is that in this case the polarization
medium is not distinct from the electrons which are attracted. Consider the
case of spin polarization. One electron produces a spin polarization cloud in the
neighboring electron liquid. This spin polarization persists for some time before
dying out. The second electron can interact with the spin polarization induced
by the first electron and will be either attracted or repelled depending on its
spin. In this way a spin dependent effective interaction is geerated. Just as one
thinks of the lattice polarization mechanism as exchange of virtual phonons, one
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Figure 14.8: D-wave pairing operator defined on a plaquette

Figure 14.9: Pair-binding energy in a Hubbard plaquette[7]. When pair binding
energy is positive it is energetically favorable to put holes into plaquettes in
pairs.

may think of the process which we just described as equivalent to exchange of
a virtual paramagnon.

In the phonon mechanism, the lattice constitutes essentially an independent
system and its motion is affected very little by what is going on in the elec-
tron gas. Consequently, when the electron gas becomes superconducting, the
response of the lattice is practically unaffected. In the case of the spin polar-
ization mechanism, the medium, which is polarized, is the same as electrons
undergoing the transition. Therefore, if as a result of attraction the behavior
of electrons is changed (e.g. after they form Cooper pairs) the response of the
polarization medium is automatically affected. Hence we need to consider feed-
back processes between spin fluctuations and pairing. One can use RPA type
analysis to calculate BCS type coupling constants for different components of
the order parameter (see fig. 14.10).

Another way to understand the origin of d-wave pairing is to consider the
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Figure 14.10: Effective BCS coupling constants for the Hubbard model com-
puted using RPA type analysis. dx2−y2 component strongly dominates near
half-filling. It is defined as ∆k = cos kx − cos ky. Figure taken from [21].

Figure 14.11: Real space picture of effective interaction for fermions mediated
by magnetic fluctuations. Note that it changes sign depending on the distance
and direction. Figure taken from [21].

BCS equation on the pairing amplitude.

∆k = −
∑
k′

V (k, k′)
∆k′

Ek′
(14.16)

Within paramagnon exchange model we expect V (k, k′) ∼ χ(k − k′). When
the system is close to an AF instability and k − k′ is around Q, χ(Q) should
be large and positive. Hence we expect ∆k+Q = −∆k. This is satisfied for
∆k = cos kx − cos ky (see fig. 14.12).

14.3.3 Alternatives to pairing

Another possibility is that holes make bound states of more than two particles.
A state that often arises in mean-field calculations is a stripe phase shown in
figure 14.13. Such states have been obtained in Hartree-Fock calculations [23, 27]
and DMRG analysis of ladders[25]. Many neutron scattering experiments on
high Tc cuprates have been interpreted in terms of stripe phases.

Other types of ordered phases have been considered away from half-filling,
such as canted antiferromagnetic phase and spin spiral. However most of them
appear to be unstable to phase separation.
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Figure 14.12: d-wave pairing arising from the AF magnetic fluctuations.

Figure 14.13: Schematic picture of a stripe phase

14.4 Current experiments with fermions in op-
tical lattices

Current experiments reached the Mott insulating regime where double occupan-
cies are strongly suppressed[10, 12]. However the temperature is still too high
to observe magnetic order. Results of experiments demonstrating strongly in-
teracting nature of the Hubbard mode and the appearance of incompressibility
are shown in figs. 14.14 and 14.16.

Interesting experiments have also been on done on exploring dynamics of
fermions in a lattice. This includes probing fermions using lattice modulation
experiments[10], measuring doublon lifetime[9, 11], and analyzing expansion of
interacting particles[13].

It is also worth mentioning that for negative scattering length we find at-
tractive Hubbard model which has been studied in detail using Monte Carlo[18].
It has been studied experimentally in [8].

Mixtures of fermions and bosons in optical lattices have also been studied
in recent experiments[15, 19, 5].
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Figure 14.14: TOF experiments with nninteracting fermions in an optical lat-
tice. At small densities the Fermi surface is nearly spherical. At larger fillings
fermions fill up the entire Brillouin zone. Figure taken from [6].

14.5 Problems to Chapter 14

Problem 1.
A common model for discussing the high Tc cuprates is the t-J model with

the Hamiltonian

H = −t
∑
<ij>

Ps · C+
iσ Cjσ · Ps + J

∑
<ij>

~Si ~Sj ; J > 0.

Here < ij > denotes the nearest neighbors and Ps projects out the states
with two electrons on one site (so only states with 0 or 1 electrons per site exist
in the Hilbert space of the t-J model). In this problem you will study the t-J
model on a 4 site plaquette.

a) When there is exactly 4 electrons per 4 sites, the t-J model reduces to the
AF Heisenberg model. Show that the ground state in this case is

|ψ4 >=
1
2

(S+
12 S

+
34 − S+

14 S
+
23) |vacuum >

where
S+
ij = (C+

i↑ C
+
j↓ − C+

i↓ C
+
j↑)√

2

Hint: Write the Heisenberg Hamiltonian as

J(~S1
~S2 + ~S2

~S3 + ~S3
~S4 + ~S4

~S1) =
J

2
(~S1 + ~S2 + ~S3 + ~S4)2 − J(~S1

~S3 + ~S2
~S4),

and construct a state for which ~Stot = 0, but ~S1·~S3 and ~S2·~S4 are maximized.

b) Find the ground state for two electrons |ψ2).

c) Take the definition of the dx2−y2 Cooper pair creation operator, ∆̃dx2−y2 ,
as in the notes:



14.5. PROBLEMS TO CHAPTER ?? 13

Figure 14.15: Measurements of doublon density as a probe of the Mott state.
Figure taken from [10].

∆̃†dx2−y2
= S†12 + S†43 − S

†
14 − S

†
23

Compute < ψ4 | ∆̃+
dx2−y2 | ψ2 >

d) Define the “extended s-wave” Cooper pair creation operator as

∆̃+
s∗ = (S+

12 + S+
43 + S+

14 + S+
23)

Compute < ψ4 | ∆̃+
s∗ | ψ2 >

Problem 2 (by Alexey Gorshkov)

Consider fermionic alkaline-earth atoms with mass M and nuclear spin I
trapped in an optical lattice. The internal state |αm〉 of one such atom is
specified by the electronic state α (= g, e) and by the nuclear spin projection m,
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Figure 14.16: Measurements of the incompressible character of the Mott state.
Figure taken from [12].

which runs over N = 2I + 1 nuclear Zeeman levels. In first-quantized notation,
the Hamiltonian is

H =
∑
p

Hp +
1
2

∑
p 6=q

Hpq, (14.17)

where indices p, q run over the atoms. The one-body Hamiltonian is (~ = 1)

Hp = − 1
2M
∇2
p +

∑
α

|α〉p〈α|Vα(rp), (14.18)

where Vα(r) = V0α[sin2(kx) + sin2(ky) + sin2(kz)] is the potential seen by elec-
tronic state α, and |α〉p〈α| projects atom p on orbital state α. Pairwise s-wave
interactions are

Hpq = δ(rp − rq)
4π
M

(agg|gg〉〈gg|+ aee|ee〉〈ee|+ a+
eg|eg〉++〈eg|+ a−eg|eg〉−−〈eg|).

(14.19)
Here |eg〉±±〈eg| is the projection operator on |eg〉±. |αα〉 = |α〉p|α〉q and
|eg〉± = (|e〉p|g〉q ± |g〉p|e〉q)/

√
2. aαα and a±eg are the four s-wave scattering

lengths.
(a) Assuming that only the lowest band is occupied, derive the Hubbard

Hamiltonian

H ′ = −
∑
〈j,i〉α,m

Jα(c†iαmcjαm + c†jαmciαm) +
∑
j,α

Uαα
2
njα(njα − 1)

+V
∑
j

njenjg + Vex
∑
j,m,m′

c†jgmc
†
jem′cjgm′cjem (14.20)



14.5. PROBLEMS TO CHAPTER ?? 15

and express Jα, Uαα, V , and Vex in terms of M , the four scattering lengths,
Vg(r), Ve(r), and the Wannier functions wα(r−rj), where rj is the center of site
j. Here c†jαm creates an atom in internal state |αm〉 at site j, njαm = c†jαmcjαm,
and njα =

∑
m njαm. The sum 〈j, i〉 is over pairs of nearest neighbor sites i, j.

Constant terms, proportional to
∑
j njα, are omitted in Eq. (14.20).

(b) Define SU(2) orbital algebra via

Tµ =
1
2

∑
jmαβ

c†jαmσ
µ
αβcjβm, (14.21)

where σµ (µ = x, y, z) are Pauli matrices in the {e, g} basis. Verify that
[T z, H ′] = 0. This U(1) symmetry follows from the elasticity of collisions as
far as the electronic state is concerned.

(c) Define nuclear-spin permutation operators

Smn =
∑
j,α

c†jαncjαm. (14.22)

Verify that [Smn , H
′] = 0 for all n, m. This SU(N) symmetry follows from

the independence of scattering lengths and of the trapping potential from the
nuclear spin.

(d) Derive the conditions on Jg, Je, Ugg, Uee, V , and Vex, under which the
U(1) orbital symmetry is enhanced up to a full SU(2) symmetry: [T z, H ′] =
[T y, H ′] = [T z, H ′] = 0.
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