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Chapter 3

Bose-Einstein condensation
of weakly interacting
atomic gases

3.1 Bogoliubov theory

Microscopic Hamiltonian for the uniform system of bosons with contact inter-
action is given by

U
H=> ebb, + 5 > b bbby — > bib, (3.1)
P pp'q P

Here b, are boson annihilation operators at momentum p, €, = p?/2m is kinetic
energy, V-volume of the system. The strength of contact interaction Uy is
related to the s-wave scattering length
4mh%a
Uy = 2 (3.2)

m

To relate the value of as; to microscopic interactions requires solving for the
scattering amplitude in the low energy limit. We will discuss this procedure
in the sections dealing with Feshbach resonances. Note that we work in the
grand canonical ensemble, i.e. we fix the chemical potential x4 and calculate the
number of particles Ny that corresponds to it.

For non-interacting atoms at 7' = 0 all atoms are condensed in the state of
lowest kinetic energy at k = 0

L
VNI

where |vac) is the vacuum state. It is natural to take this state as zeroth
order approximation for finite but small interactions. Expectation value of the

Wn) = (b5 _o)"[vac) (3-3)
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Hamiltonian (3.1 in this state is

Up . o
FE = —uN, —N, 3.4
wiNo + oy V0 (34)

Minimizing with respect to Ny we find relation between the number of particles

and the chemical potential
No n
— = 3.5
vV U (3.5)

To proceed to the next order in the interaction it is convenient to introduce the
idea of broken symmetry.
When we consider two point correlation functions for the state (3.3)

No
v

U(r) = % > by (3.7)

(U 9T (r2) W ()| W) = (3.6)

they do not depend on the relative distance between the two points. This
is the definition of the long range order. Naively one expects property (3.6)
to hold when individual expectation values of ¥(r) and ¥'(r) are equal to
(No/V)}/2. However individual expectation values of these operators vanish
since they change the number of particles by one and state |¥y) has a well
defined number of particles. Let us then consider a state

Ty) = e % e-o|vac) (3.8)

If we choose o = Nol/2 we find that

(W () W) = (oW1 (1) W) = (52 )2 (39)
State (3.8) captures property (3.6) but does it in a more natural way. It has
individual expectation values of ¥(r) and ¥'(r). One may be concerned by the
fact that this state does not have a well defined number of particles, although
Hamiltonian (3.1) commutes with the total number of particles N = 3 bibp.
And according to the fundamental theorem in quantum mechanics, if some
operator commutes with the Hamiltonian, then it can be made diagonal in the
basis of energy eigenstates. This ”violation” of the basic theorem of quantum
mechanics is the essence of the idea of spontaneous symmetry breaking. In
state (3.8) we have a non-vanishing expectation value of the order parameter
(PN [P (r)|¥N) and this automatically means that state |¥ ) is not an eigenstate
of the conserved operator N. Some justification for using wavefunction (3.8)
instead of (3.3) is that it has the correct number of particles on the average

(Wo|N|Wo) = No (3.10)
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and relative fluctuations in the number of particles are negligible in the ther-
modynamic limit.

AN = ((Ux|(N = No)*¥n)) " = N/ (3.11)

The benefit of using the state (3.8) is that it dramatically simplifies calculations.

To continue perturbation theory in U we apply the traditional methodology
of mean-field approaches. We replace b;tzo operators by their expectation values
in the ground state. The importance of different terms is determined by the
number of b]fzo factors, since each of them carries a large factor Nol/ 2 The
most important terms, where all operators are at p = 0, are given by equation
(3.4). The next contribution comes from terms that have two operators at
non-zero momentum, which gives us the mean field Hamiltonian

NEUy
2V

+ (ep + 2n0U — p)(blby + bT b_p) + nolUo Y _(bibT, + bpb_p)
p7#0 p7#0

Hvr = —

(3.12)

In summations Zp 0 momentum pairs p, -p should be counted only once, ng =
No/V.
We can diagonalize (3.12) using Bogoliubov transformation

— T
by = upa,t+vpal,
bop = Upa_p+ vpor) (3.13)
Bosonic commutation relations are preserved when
2 2
u, —v, =1 (3.14)

The mean-field Hamiltonian becomes after substituting (3.13) and pu = noUp

NZU,

Hyr = — 20V0 + Z(a;’)ap + aT_poz_p) [(ep + noUo)(uf, + vf,) + noUp (2upvp)]

p#0
+ Y (afal, +apay) [(6 + nolo) (2upvy) + nols (uf + v})]

p#0
(3.15)

Cancellation of the non-diagonal terms requires
(ep + noUo) (2upvy) + noUp(ul + v7) = 0 (3.16)

To satisfy equation (3.14) one can take

u, = cosh 6,
vp = sinh 6, (3.17)
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Solution of these equations is

ep +noUo + Ep\1/2
up = (prp) (3.18)
€y + ’ﬂoUg - F 1/2
which gives
cosh20, = ¢ + ol
By
. noUo
sinh 20, = -—
p Ep
Ey, = \/(Ep +noUp)? — (nolp)? (3.20)
The diagonal form of the mean-field Hamiltonian
NZU
Hyup = — 2OVO + Z Ep(a;gozp + ozT_poz_p) (3.21)
p#0
Dispersion of collective modes is given by
Ep = GP(EP + QTLQU()) (322)
We can define the healing length from
B (3.23)
mf% — oYo .

In the long wavelength limit, ¢, << 1, we find sound-like dispersion £, =

vs|q|. Sound velocity
1/2
vy = (”°U°> (3.24)
m

We can interpret the appearance of the gapless mode as manifestation of spon-
taneously broken symmetry: this mode arises because the superfluid state spon-
taneously breaks the U(1) symmetry corresponding to the conservation in the
number of of particles. However sound mode by itself does not imply supeflu-
idity. As we know, sound modes exist in room temperature gases.

In the short wavelength limit, ¢, >> 1, we find free particle dispersion
E, = q¢*/2m.

It is natural to ask about the change in the wavefunction (3.8) implied by
the Bogoliubov analysis. From the form of the mean-field Hamiltonian (3.12)
we expect that it should have coherent superpositions of p, —p pairs. So we
expect the wavefunction to be of the form

[Wpog) = C ePr=0t20 fobibl s |yac) (3.25)
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where C is normalization constant. To find coefficients f, one simply notes that
state (3.25) should be a vaccum of Bogoliubov quasiparticles. Hence it should
satisfy equations

| UBog) = (upby + ”pr—p)|‘I’BOg> =0 (3.26)

for all momenta p. The last condition requires f, = —vp/up.

3.1.1 Experimental tests of the Bogoliubov theory

Information about collective modes of many body systems is contained in the
response functions. Imaginary part of the density-density response function is
called the dynamic structure factor

S(g,w) =Y [(nlp}|0)]*6(w — (B, — Eo)) (3.27)

n

Here |0) denotes the ground state, summation over n goes over all excited states
|n), density operator at wavevctor ¢ is given by

1
T T
Py = NG Ek bk+qbk (3.28)

Note that the difference in momenta of states |0) and |n) must be ¢ for the
matrix element in (3.27) to be non-zero.

Two photon off-resonant light scattering shown in figure 3.1 can be used to
measure the dynamic structure factor of the BEC [4]. By absorbing a photon
from one laser beam an atom goes into an excited state (but only virtually since
there is strong frequency detuning) and then gets de-excited by a photon from
the other beam. By treating optical fields as classical, one can obtain effective
Hamiltonian describing interaction of atoms with the laser fields

Vo . . .
Vo = 7(026 wt pT_qe“’t) (3.29)
Fermi’s golden then gives the rate with which excitations are created in the
system (this is linear response theory and applies only for exciting a relatively
small number of atoms)

W =VZS(q,w) (3.30)

What is being measured in experiments is the number of atoms excited into a
state with finite momentum as a function of wavevector and frequency differ-
ences of the two laser beams (see figs 3.1 and 3.2).

To apply formulas (3.27), (3.29) to the BEC we write p} in equation (3.28)
using creation and annihilation operators of the Bogoliubov quasiparticles. The
leading term in N(}/Q

No

. 1/2
A=) = (1) el a6
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Figure 3.1: Experimental scheme for probing collective modes in a BEC using
off-resonant light scattering. Figure taken from Ref. [4]. Excitations are created
by stimulated light scattering using two laser which are both detuned from the
atomic resonance. Absorption of one photon and emission of the other provides
energy and momentum to create an excitation.

Ground state |0) is a vacuum of Bogoliubov quasiparticles. Hence state |n) in
(3.27) should have one Bogoliubov quasiparticle and we obtain

S(g:w) = no (g +v4)8(w = Ey) = no = 6(w — E,) (3.32)

q

For small ¢ we find e,/ E;  |q|. Results of experimental measurements of both
the dispersion of Bogoliubov quasiparticles and the amplitude of the structure
factor are shown in fig. 3.3.

3.2 Gross-Pitaevskii equation

In the Bogoliubov analysis we assumed macroscopic condensation of atoms into
a single state and then found the state by minimizing the energy. We can
also have macroscopic condensation of particles into a single state that is not
stationary but undergoes dynamic evolution. This form of dynamics is exact
for non-interacting particles, when all particles undergo identical evolution de-
termined by the external fields (assuming that all atoms started in the same
state). It is also a good approximation for weakly interacting particles. The
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role of interactions is to provide an effective field acting on the atoms. This
effective field needs to be computed self-consistently according to the instanta-
neous value of the density. Equation describing such self-consistent dynamics is
called the Gross-Pitaevskii (GP) equation.
We rewrite Hamiltonian (3.1) in real space rather than momentum space
representations. We also add external potential Vix (7, t) for generality
Uo

H= %/d%ww + /d3ﬂ/cxt(r,t)xpT(r)\If(r)+7/d%qﬁ(r)\p*(r)xp(r)q/(r)

- u / d3r Ut (r) U (r) (3.33)
We use canonical commutation relations of ¥ operators
[(U(r),¥(r)] =0 [(U(r), Oi(r")] = 6(r—1") (3.34)

and write Heisenberg equations of motion

i = - [7—[ \i!(r)]

1 A A A A A ~
5 V2H() 4 Vi (r, ) B (r) + Uo ¥ (1) () (r) — b (1)
m
(3.35)
We put ¥ to emphasize that at this point this is an exact operator equation of
motion. However we want to describe states that have finite expectation values

of (¥(r,t)). Thus we can turn this operator equation into classical differential
equations

iaq]d(r) = _ L V2U (1) 4 Vg (1, 8) Wt (1) + UO\I/L(T)\I/Cl(T)\I/d(?") — p¥a(r)

ot 2m
(3.36)

Here W emphasizes that this is now differential equation on a classical field.
Another way of thinking about the GP equation is to consider generalization of
state (3.8) to time and space dependent wavefunction

W(8)) = \/% ( / B (r, )8 (1)) [vac) (3.37)

where wavefunction Uq(r,t) is assumed to be normalized. We can think of
state (3.37) as a time dependent variational wavefunction, and project dynamics
under Hamiltonian (3.33) into this state . This procedure gives equation (3.36)
(see problems for this section).

In the simplest case of Vi, = 0 we observe that equation (3.36) has a static
solution ¥, = \/7”Toei¢, provided that equation (3.5) is satisfied. Phase ¢ can
be arbitrary.
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Equation (3.35) can be used to obtain an alternative derivation of the spec-
trum of Bogoliubov quasiparticles. For a system without an external poten-
tial we take ¥y = ,/ng and then consider small fluctuations around this state
U(r,t) = ¥y + 0¥(r,t). Linearized equations of motion are

. 1
P00 = ——— V25U + Uyng(00 + 5U*)
2m

. 1
—i0U* = —5 V25U* + Ugng (00 + 50*) (3.38)
Keeping in mind representation of the instantaneous wavefunction U(r,t) =

V1o + on(r,t) €8 it is convenient to introduce
op = /no (0¥ 4 6T*)
1

o = 5 \/%(5\1/—5\1/*) (3.39)

Then the last two equations can be written as

s = —V(2Vse) (3.40)
m
. 1
—6¢ = Uydn — V35n (3.41)
4dmnyg

The first equation can be understood as mass conservation. If we define the
superfluid current as j, = (ng/m) V¢, we can rewrite equation (3.40) as &1 =
—ﬁfs. Equation (3.41) is the so-called Josephson relation 6 = dp. Combining
the two equations we obtain

60 = (Uono = 5 )~ 66 (3.42)

Taking §¢ ~ gi)peipf”’iEPt we find the collective mode dispersion given by equa-
tion (3.20).

3.3 Problems for Chapter 3

Problem 1
Let |¥g) be the Bogoliubov ground state of a BEC. Consider a state obtained
from |¥q) by creating [ excitations with momentum +¢

aﬂ
—H | W)

VI

Verify by explicit calculation that this state contains lug + vg original (free)
particles with momentum -+¢ and (I+1)v? original (free) particles with physical
momentum —gq. This effect was demonstrated experimentally in [2].
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Problem 2
Show that wavefunction (3.25) solves equation (3.26) for f, = —vp/up.

Problem 3

Consider a sudden change of the scattering length in Bose gas from as; to
asz. Both interactions are small. Within Bogoliubov theory, describe dynamics
of the system.

Problem 4* (difficult problem). Alternative derivation of the Gross-Pitaevskii
equation.

To project the Schroedinger equation into wavefunction (3.37) one defines
the Lagrangian

L= —i¥(t) %l‘l’(t» + (W) H[W () (3.43)

Derive this Lagrangian and show that varying it with respect to ¥, gives the
GP equation (3.36).

Hint. Tt may be conceptually easier to discretize space when thinking about
this problem.
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k1,w1 k2,m1-w' :
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Figure 3.2: Experimental observation of momentum transfer to BEC by Bragg
sattering. Atoms were exposed to laser beams as shown in fig 3.1. Time of flight
technique converts momentum occupations into real space images. Figure taken
from Ref. [1].
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Figure 3.3: Experimental measurements of the dispersion of Bogoliubov quasi-
particles and the dynamical structure factor in the BEC. Figure taken from

[3].
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