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Chapter 3

Bose-Einstein condensation
of weakly interacting
atomic gases

3.1 Bogoliubov theory

Microscopic Hamiltonian for the uniform system of bosons with contact inter-
action is given by

H =
∑
p

εpb
†
pbp +

U0

2V

∑
pp′q

b†p+qb
†
p′−qbp′bp − µ

∑
p

b†pbp (3.1)

Here bp are boson annihilation operators at momentum p, εp = p2/2m is kinetic
energy, V -volume of the system. The strength of contact interaction U0 is
related to the s-wave scattering length

U0 =
4π~2as
m

(3.2)

To relate the value of as to microscopic interactions requires solving for the
scattering amplitude in the low energy limit. We will discuss this procedure
in the sections dealing with Feshbach resonances. Note that we work in the
grand canonical ensemble, i.e. we fix the chemical potential µ and calculate the
number of particles N0 that corresponds to it.

For non-interacting atoms at T = 0 all atoms are condensed in the state of
lowest kinetic energy at k = 0

|ΨN 〉 =
1√
N !

(b†p=0)N |vac〉 (3.3)

where |vac〉 is the vacuum state. It is natural to take this state as zeroth
order approximation for finite but small interactions. Expectation value of the
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Hamiltonian (3.1 in this state is

E = −µN0 +
U0

2V
N2

0 (3.4)

Minimizing with respect to N0 we find relation between the number of particles
and the chemical potential

N0

V
=

µ

U0
(3.5)

To proceed to the next order in the interaction it is convenient to introduce the
idea of broken symmetry.

When we consider two point correlation functions for the state (3.3)

〈ΨN |Ψ†(r2)Ψ(r1)|ΨN 〉 =
N0

V
(3.6)

Ψ(r) =
1√
V

∑
p

bpe
ipr (3.7)

they do not depend on the relative distance between the two points. This
is the definition of the long range order. Naively one expects property (3.6)
to hold when individual expectation values of Ψ(r) and Ψ†(r) are equal to
(N0/V )1/2. However individual expectation values of these operators vanish
since they change the number of particles by one and state |ΨN 〉 has a well
defined number of particles. Let us then consider a state

|Ψ0〉 = e−
α2

2 eαb
†
p=0 |vac〉 (3.8)

If we choose α = N
1/2
0 we find that

〈Ψ0|Ψ(r)|Ψ0〉 = 〈Ψ0|Ψ†(r)|Ψ0〉 = (
N0

V
)1/2 (3.9)

State (3.8) captures property (3.6) but does it in a more natural way. It has
individual expectation values of Ψ(r) and Ψ†(r). One may be concerned by the
fact that this state does not have a well defined number of particles, although
Hamiltonian (3.1) commutes with the total number of particles N =

∑
p b
†
pbp.

And according to the fundamental theorem in quantum mechanics, if some
operator commutes with the Hamiltonian, then it can be made diagonal in the
basis of energy eigenstates. This ”violation” of the basic theorem of quantum
mechanics is the essence of the idea of spontaneous symmetry breaking. In
state (3.8) we have a non-vanishing expectation value of the order parameter
〈ΨN |Ψ(r)|ΨN 〉 and this automatically means that state |ΨN 〉 is not an eigenstate
of the conserved operator N . Some justification for using wavefunction (3.8)
instead of (3.3) is that it has the correct number of particles on the average

〈Ψ0|N |Ψ0〉 = N0 (3.10)
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and relative fluctuations in the number of particles are negligible in the ther-
modynamic limit.

∆N =
(
〈ΨN |(N −N0 )2|ΨN 〉

)1/2
= N

1/2
0 (3.11)

The benefit of using the state (3.8) is that it dramatically simplifies calculations.
To continue perturbation theory in U we apply the traditional methodology

of mean-field approaches. We replace b±p=0 operators by their expectation values
in the ground state. The importance of different terms is determined by the

number of b±p=0 factors, since each of them carries a large factor N
1/2
0 . The

most important terms, where all operators are at p = 0, are given by equation
(3.4). The next contribution comes from terms that have two operators at
non-zero momentum, which gives us the mean field Hamiltonian

HMF = −N
2
0U0

2V
+
∑
p 6=0

(εp + 2n0U0 − µ)(b†pbp + b†−pb−p) + n0U0

∑
p 6=0

(b†pb
†
−p + bpb−p)

(3.12)

In summations
∑
p 6=0 momentum pairs p, -p should be counted only once, n0 =

N0/V .
We can diagonalize (3.12) using Bogoliubov transformation

bp = upαp + vpα
†
−p

b−p = upα−p + vpα
†
p (3.13)

Bosonic commutation relations are preserved when

u2
p − v2

p = 1 (3.14)

The mean-field Hamiltonian becomes after substituting (3.13) and µ = n0U0

HMF = −N
2
0U0

2V
+

∑
p 6=0

(α†pαp + α†−pα−p ) [(εp + n0U0)(u2
p + v2

p) + n0U0(2upvp)]

+
∑
p 6=0

(α†pα
†
−p + αpα−p) [(εp + n0U0)(2upvp) + n0U0(u2

p + v2
p)]

(3.15)

Cancellation of the non-diagonal terms requires

(εp + n0U0)(2upvp) + n0U0(u2
p + v2

p) = 0 (3.16)

To satisfy equation (3.14) one can take

up = cosh θp

vp = sinh θp (3.17)
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Solution of these equations is

up =
(εp + n0U0 + Ep

2Ep

)1/2
(3.18)

vp = −
(εp + n0U0 − Ep

2Ep

)1/2
(3.19)

which gives

cosh 2θp =
εp + n0U0

Ep

sinh 2θp = −n0U0

Ep

Ep =
√

(εp + n0U0)2 − (n0U0)2 (3.20)

The diagonal form of the mean-field Hamiltonian

HMF = −N
2
0U0

2V
+

∑
p 6=0

Ep(α
†
pαp + α†−pα−p ) (3.21)

Dispersion of collective modes is given by

Ep =
√
εp(εp + 2n0U0) (3.22)

We can define the healing length from

1

mξ2
h

= n0U0 (3.23)

In the long wavelength limit, qξh << 1, we find sound-like dispersion Eq =
vs|q|. Sound velocity

vs =

(
n0U0

m

)1/2

(3.24)

We can interpret the appearance of the gapless mode as manifestation of spon-
taneously broken symmetry: this mode arises because the superfluid state spon-
taneously breaks the U(1) symmetry corresponding to the conservation in the
number of of particles. However sound mode by itself does not imply supeflu-
idity. As we know, sound modes exist in room temperature gases.

In the short wavelength limit, qξh >> 1, we find free particle dispersion
Eq = q2/2m.

It is natural to ask about the change in the wavefunction (3.8) implied by
the Bogoliubov analysis. From the form of the mean-field Hamiltonian (3.12)
we expect that it should have coherent superpositions of p, −p pairs. So we
expect the wavefunction to be of the form

|ΨBog〉 = C eαb
†
p=0+

∑
p fpb

†
pb
†
−p |vac〉 (3.25)
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where C is normalization constant. To find coefficients fp one simply notes that
state (3.25) should be a vaccum of Bogoliubov quasiparticles. Hence it should
satisfy equations

αp|ΨBog〉 = (upbp + vpb
†
−p)|ΨBog〉 = 0 (3.26)

for all momenta p. The last condition requires fp = −vp/up.

3.1.1 Experimental tests of the Bogoliubov theory

Information about collective modes of many body systems is contained in the
response functions. Imaginary part of the density-density response function is
called the dynamic structure factor

S(q, ω) =
∑
n

|〈n|ρ†q|0〉|2δ(ω − (En − E0)) (3.27)

Here |0〉 denotes the ground state, summation over n goes over all excited states
|n〉, density operator at wavevctor q is given by

ρ†q =
1√
V

∑
k

b†k+qbk (3.28)

Note that the difference in momenta of states |0〉 and |n〉 must be q for the
matrix element in (3.27) to be non-zero.

Two photon off-resonant light scattering shown in figure 3.1 can be used to
measure the dynamic structure factor of the BEC [4]. By absorbing a photon
from one laser beam an atom goes into an excited state (but only virtually since
there is strong frequency detuning) and then gets de-excited by a photon from
the other beam. By treating optical fields as classical, one can obtain effective
Hamiltonian describing interaction of atoms with the laser fields

Veff =
V0

2
(ρ†qe

−iωt + ρ†−qe
iωt) (3.29)

Fermi’s golden then gives the rate with which excitations are created in the
system (this is linear response theory and applies only for exciting a relatively
small number of atoms)

W = V 2
0 S(q, ω) (3.30)

What is being measured in experiments is the number of atoms excited into a
state with finite momentum as a function of wavevector and frequency differ-
ences of the two laser beams (see figs 3.1 and 3.2).

To apply formulas (3.27), (3.29) to the BEC we write ρ†q in equation (3.28)
using creation and annihilation operators of the Bogoliubov quasiparticles. The

leading term in N
1/2
0

ρ†q =
1√
V

(b0b
†
q + b†0b−q) =

(
N0

V

)1/2

(uq + vq)(α
†
q + α−q) (3.31)
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Figure 3.1: Experimental scheme for probing collective modes in a BEC using
off-resonant light scattering. Figure taken from Ref. [4]. Excitations are created
by stimulated light scattering using two laser which are both detuned from the
atomic resonance. Absorption of one photon and emission of the other provides
energy and momentum to create an excitation.

Ground state |0〉 is a vacuum of Bogoliubov quasiparticles. Hence state |n〉 in
(3.27) should have one Bogoliubov quasiparticle and we obtain

S(q, ω) = n0 (uq + vq)
2δ(ω − Eq) = n0

εq
Eq

δ(ω − Eq) (3.32)

For small q we find εq/Eq ∝ |q|. Results of experimental measurements of both
the dispersion of Bogoliubov quasiparticles and the amplitude of the structure
factor are shown in fig. 3.3.

3.2 Gross-Pitaevskii equation

In the Bogoliubov analysis we assumed macroscopic condensation of atoms into
a single state and then found the state by minimizing the energy. We can
also have macroscopic condensation of particles into a single state that is not
stationary but undergoes dynamic evolution. This form of dynamics is exact
for non-interacting particles, when all particles undergo identical evolution de-
termined by the external fields (assuming that all atoms started in the same
state). It is also a good approximation for weakly interacting particles. The



3.2. GROSS-PITAEVSKII EQUATION 9

role of interactions is to provide an effective field acting on the atoms. This
effective field needs to be computed self-consistently according to the instanta-
neous value of the density. Equation describing such self-consistent dynamics is
called the Gross-Pitaevskii (GP) equation.

We rewrite Hamiltonian (3.1) in real space rather than momentum space
representations. We also add external potential Vext(r, t) for generality

H =
1

2m

∫
d3r |∇Ψ|2 +

∫
d3r Vext(r, t)Ψ

†(r)Ψ(r) +
U0

2

∫
d3rΨ†(r)Ψ†(r)Ψ(r)Ψ(r)

− µ

∫
d3rΨ†(r)Ψ(r) (3.33)

We use canonical commutation relations of Ψ operators

[Ψ(r),Ψ(r′)] = 0
[
Ψ(r),Ψ†(r′)

]
= δ(r − r′) (3.34)

and write Heisenberg equations of motion

i
∂Ψ̂(r)

∂t
= −

[
H, Ψ̂(r)

]
= − 1

2m
∇2Ψ̂(r) + Vext(r, t)Ψ̂(r) + U0Ψ̂†(r)Ψ̂(r)Ψ̂(r)− µΨ̂(r)

(3.35)

We put Ψ̂ to emphasize that at this point this is an exact operator equation of
motion. However we want to describe states that have finite expectation values
of 〈Ψ(r, t)〉. Thus we can turn this operator equation into classical differential
equations

i
∂Ψcl(r)

∂t
= − 1

2m
∇2Ψcl(r) + Vext(r, t)Ψcl(r) + U0Ψ†cl(r)Ψcl(r)Ψcl(r)− µΨcl(r)

(3.36)

Here Ψcl emphasizes that this is now differential equation on a classical field.
Another way of thinking about the GP equation is to consider generalization of
state (3.8) to time and space dependent wavefunction

|Ψ(t)〉 =
1√
N !

(

∫
d3rΨcl(r, t)Ψ̂

†(r) )N |vac〉 (3.37)

where wavefunction Ψcl(r, t) is assumed to be normalized. We can think of
state (3.37) as a time dependent variational wavefunction, and project dynamics
under Hamiltonian (3.33) into this state . This procedure gives equation (3.36)
(see problems for this section).

In the simplest case of Vext = 0 we observe that equation (3.36) has a static
solution Ψcl =

√
n0 e

iφ, provided that equation (3.5) is satisfied. Phase φ can
be arbitrary.
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Equation (3.35) can be used to obtain an alternative derivation of the spec-
trum of Bogoliubov quasiparticles. For a system without an external poten-
tial we take Ψ0 =

√
n0 and then consider small fluctuations around this state

Ψ(r, t) = Ψ0 + δΨ(r, t). Linearized equations of motion are

i δΨ̇ = − 1

2m
∇2δΨ + U0n0(δΨ + δΨ∗)

−i δΨ̇∗ = − 1

2m
∇2δΨ∗ + U0n0(δΨ + δΨ∗) (3.38)

Keeping in mind representation of the instantaneous wavefunction Ψ(r, t) =√
n0 + δn(r, t) eiδφ(r,t), it is convenient to introduce

δρ =
√
n0 (δΨ + δΨ∗)

δφ =
1

2i
√
n0

(δΨ− δΨ∗) (3.39)

Then the last two equations can be written as

δṅ = −~∇(
n0

m
~∇δφ ) (3.40)

−δφ̇ = U0δn−
1

4mn0
∇2δn (3.41)

The first equation can be understood as mass conservation. If we define the
superfluid current as ~js = (n0/m) ~∇δφ, we can rewrite equation (3.40) as δṅ =

−~∇~js. Equation (3.41) is the so-called Josephson relation δφ̇ = δµ. Combining
the two equations we obtain

δφ̈ = (U0n0 −
∇2

4m
)
∇2

m
δφ (3.42)

Taking δφ ∼ φpe
ipx−iEpt we find the collective mode dispersion given by equa-

tion (3.20).

3.3 Problems for Chapter 3

Problem 1
Let |Ψ0〉 be the Bogoliubov ground state of a BEC. Consider a state obtained

from |Ψ0〉 by creating l excitations with momentum +q

α†l+q√
l!
|Ψ0〉

Verify by explicit calculation that this state contains lu2
q + v2

q original (free)
particles with momentum +q and (l+1)v2

q original (free) particles with physical
momentum −q. This effect was demonstrated experimentally in [2].
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Problem 2
Show that wavefunction (3.25) solves equation (3.26) for fp = −vp/up.

Problem 3
Consider a sudden change of the scattering length in Bose gas from as1 to

as2. Both interactions are small. Within Bogoliubov theory, describe dynamics
of the system.

Problem 4∗ (difficult problem). Alternative derivation of the Gross-Pitaevskii
equation.

To project the Schroedinger equation into wavefunction (3.37) one defines
the Lagrangian

L = −i〈Ψ(t)| d
dt
|Ψ(t)〉+ 〈Ψ(t)|H|Ψ(t)〉 (3.43)

Derive this Lagrangian and show that varying it with respect to Ψ∗cl gives the
GP equation (3.36).
Hint. It may be conceptually easier to discretize space when thinking about
this problem.
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FIG. 1. Observation of momentum transfer by Bragg scat-
tering. (a) Atoms were exposed to laser beams with wave
vectors k1 and k2 and frequency difference v, imparting mo-
mentum h̄q along the axis of the trapped condensate. The
Bragg scattering response of trapped condensates [(b) and (d)]
was much weaker than that of condensates after a 5 ms free
expansion [(c) and (e)]. Absorption images [(b) and (c)] af-
ter 70 ms time of flight show scattered atoms distinguished
from the denser unscattered cloud by their axial displacement.
Curves (d) and (e) show radially averaged (vertically in image)
profiles of the optical density after subtraction of the thermal
distribution. The Bragg scattering velocity is smaller than the
speed of sound in the condensate (position indicated by circle).
Images are 3.3 3 3.3 mm.

Both beams were derived from a common source, and

then passed through two acousto-optical modulators op-

erated with the desired frequency difference v, giving the
beams a detuning of 1.6 GHz below the jF ! 1! ! jF0 !
0, 1, 2! optical transitions. Thus, at the optical wave-

length of 589 nm, the Bragg recoil velocity was h̄q"m #
7 mm"s, giving a predicted Bragg resonance frequency of
v0

q ! h̄q2"2m # 2p 3 1.5 kHz for free particles. The
beams were pulsed on at an intensity of about 1 mW"cm2

for a duration of 400 ms. To suppress super-radiant

Rayleigh scattering [10], both beams were linearly polar-

ized in the plane defined by the condensate axis and the

wave vector of the light.

The Bragg scattering of a trapped condensate was ana-

lyzed by switching off the magnetic trap 100 ms after the
end of the light pulse, and allowing the cloud to freely

evolve for 70 ms. During the free expansion, the den-

sity of the atomic cloud dropped and quasiparticles in the

condensate transformed into free particles and were then

imaged by resonant absorption imaging (Fig. 1). Bragg

scattered atoms were distinguished from the unscattered

atoms by their axial displacement. The speed of Bo-

goliubov sound at the center of the trapped condensate

is related to the velocity of radial expansion yr as cs !
yr"

p
2 [11] (cs ! 11 mm"s at m"h ! 6.7 kHz as shown

in Fig. 1). Thus, by comparing the axial displacement of

the scattered atoms to the radial extent of the expanded

condensate, one sees that the Bragg scattering recoil ve-

locity is smaller than the speed of sound in the trapped

condensate, i.e., the excitation in the trapped condensate

occurs in the phonon regime.

For comparison, Bragg scattering of free particles was

studied by applying a light pulse of equal intensity [12]

after allowing the gas to freely expand for 5 ms, during

which the atomic density was reduced by a factor of 23

and the speed of sound by a factor of 5 from that of

the trapped condensate. Thus, Bragg scattering in the

expanded sample occurred in the free-particle regime.

The momentum transferred to the atomic sample was

determined by the average axial position in time-of-flight

images. To extract small momentum transfers, the im-

ages were first fitted (in regions where the Bragg scattered

atoms were absent) to a bimodal distribution which cor-

rectly describes the free expansion of a condensate in the

Thomas-Fermi regime, and of a thermal component [13].

The chemical potential m of the trapped condensate was

determined from the radial width of the condensate dis-

tribution [11]. The noncondensate distribution (typically

less than 20% of the total population) was subtracted from

the images before evaluating the momentum transfer.

By varying the frequency difference v, the Bragg scat-
tering spectrum was obtained for trapped and for freely ex-

panding condensates (Fig. 2). The momentum transfer per

atom, shown in units of the recoil momentum h̄q, is anti-
symmetric about v ! 0 as condensate atoms are Bragg
scattered in either the forward or the backward direction,

depending on the sign of v [14].

From these spectra, we determined the total line strength

and the center frequency (Fig. 3) by fitting the momentum

transfer to the difference of two Gaussian line shapes, rep-

resenting excitation in the forward and the backward direc-

tion. Since S$q% ! 1 for free particles, we obtain the static
structure factor as the ratio of the line strengths for the

trapped and the expanded atomic samples. Spectra were

taken for trapped condensates at three different densities

by compressing or decompressing the condensates in the

magnetic trap prior to the optical excitation.

The Bragg resonance for the expanded cloud was cen-

tered at 1.54(15) kHz with an rms width of 900 Hz con-

sistent with Doppler broadening [15]. This frequency

includes an expected 160 Hz residual mean-field shift,

FIG. 2. Bragg scattering of phonons and of free particles.
Momentum transfer per particle, in units of h̄q, is shown vs
the frequency difference v"2p between the two Bragg beams.
Open symbols represent the phonon excitation spectrum for
a trapped condensate at a chemical potential m"h ! 9.2 kHz.
Closed symbols show the free-particle response of an expanded
cloud. Lines are fits to the difference of two Gaussian line
shapes representing excitation in the forward and backward
directions.

2877

Figure 3.2: Experimental observation of momentum transfer to BEC by Bragg
sattering. Atoms were exposed to laser beams as shown in fig 3.1. Time of flight
technique converts momentum occupations into real space images. Figure taken
from Ref. [1].
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Figure 3.3: Experimental measurements of the dispersion of Bogoliubov quasi-
particles and the dynamical structure factor in the BEC. Figure taken from
[3].
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