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Chapter 4

Spinor condensates

4.1 Two component mixtures

We consider two species of bosons. This may be two hyperfine states of the
same atom or two different species.

H =
1

2m1

∫
d3r |∇Ψ1|2 +

1

2m2

∫
d3r |∇Ψ2|2

+
U11

2

∫
d3rΨ†1Ψ†1Ψ1Ψ1 + U12

∫
d3rΨ†1Ψ†2Ψ2Ψ1 +

U22

2

∫
d3rΨ†2Ψ†2Ψ2Ψ2

− µ1

∫
d3rΨ†1Ψ1 − µ2

∫
d3rΨ†2Ψ2 (4.1)

In this section we assume that all interactions are repulsive, Uij > 0.
Mean-field energy for a state with two condensates is given by

E

V
=
U11

2
|Ψ1|4 + U12|Ψ1|2|Ψ2|2 +

U22

2
|Ψ2|4 − µ1|Ψ1|2 − µ2|Ψ2|2 (4.2)

To find the phase diagram we need to minimize this energy functional with
respect to |Ψ1| and |Ψ2| at given chemical potentials. We can have two types
of phase diagrams. In the case U11U22 > U2

12 we have a miscible system (see fig
4.1). In this case we find a uniform mixed phase with finite density of both types
of atoms. As one varies chemical potentials, densities change continuously.

In the case U11U22 < U2
12 we have an immiscible system. In the phase

diagram with chemical potentials as tuning parameters there is a direct first
order transition line between condensates of species one and species two (see
fig 4.2). Densities change discontinuously across this transition line. However
when one controls densities rather than chemical potentials, one can prepare a
system with finite density of both species. Thermodynamic equilibrium in this
case corresponds to the phase separated regime.

In the case of ultracold atoms one can also explore intersting questions re-
garding dynamics of phase separation. For example, it is possible to prepare
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4 CHAPTER 4. SPINOR CONDENSATES

a mixture of ultracold atoms in the immiscible regime dynamically. When two
species correspond to two hyperfine states of the same atom, one can start with
a BEC in one of the hyperfine states, then do the so-called π/2 rotation. Such
rotation takes each atom into a coherent superposition of being in state 1 and
2. So the initial state has 〈Ψ1〉 = 〈Ψ2〉 = Ψ0. However, such state is not an
equilibrium state and is therefore unstable. A good understanding of how the
instability develops can be obtained from analyzing collective modes.

Two component GP equations in this case can be written as

i
∂Ψ1

∂t
= −∇

2

2m
Ψ1 + U11|Ψ1|2Ψ1 + U12|Ψ2|2Ψ1 − µ1Ψ1

i
∂Ψ2

∂t
= −∇

2

2m
Ψ2 + U12|Ψ1|2Ψ2 + U22|Ψ2|2Ψ2 − µ2Ψ2 (4.3)

This is a non-equilibrium problem. Hence we can not think of the chemical
potential terms as imposing certain densities. We set the chemical potentials
by requiring that 〈Ψ1〉 = 〈Ψ2〉 = Ψ0 satisfies a stationary solution Ψ̇i = 0.

µ1 = (U11 + U12 )n0

µ2 = (U12 + U22 )n0 (4.4)

where n0 = |Ψ0|2. Equations (4.4) are equivalent to saying that in the canonical
ensemble, which is more appropriate for this nonequilibrium problem, Ψ{1,2} canonical(t) =
Ψ0e

−iµ{1,2}t.
We now consider small deviations from the initial state, Ψi = Ψ0 + δΨi(r, t)

and derive linearized GP equations

iδΨ̇1 = −∇
2

2m
δΨ1 + U11n0(δΨ1 + δΨ∗1) + U12n0(δΨ2 + δΨ∗2)

δΨ̇2 = −∇
2

2m
δΨ2 + U12n0(δΨ1 + δΨ∗1) + U22n0(δΨ2 + δΨ∗2) (4.5)

Following similar steps to the ones we used in obtaining the Bogoliubov
spectrum in Chapter 3, we find that the collective mode dispersion, resulting
from equations (4.5), satisfies an equation

(ω2
q −

q4

4m2
− U11n0

m
q2 )(ω2

q −
q4

4m2
− U22n0

m
q2 )− (

U12n0

m
q2)2 = 0 (4.6)

When U2
12 > U11U22, we find solutions with negative imaginary frequencies

(note that this is the same criterion as immiscibility in equilibrium systems).
Such imaginary solutions signal instability: small initial fluctuations grow expo-
nentially in time. The plot of frequencies vs momentum is shown in fig 4.3. The
unstable modes start at q = 0 and extend over a finite range of wavevectors.
Vanishing of the instability rate as q → 0 is a reflection of the spin conserva-
tion in the system: N1 − N2 commutes with the Hamiltonian (4.1). For large
wavevectors collective modes become stable again, since having short distance
modulation would cost too much kinetic energy. The growth rate of unstable
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modes is maximal for some finite wavevector q∗. One expects that instabilities at
this wavevector dominate so the system develops domains with the lengthscale
2π/q∗.

Experiments studying domain formation in an immiscible mixture of two
spin components of Na have been preformed by Miesener et al.[4, 20] (see
fig.4.4). Experimentally observed domain sizes are in agreement with the theo-
retical analysis above[15, 20].

The problem of domain formation in immiscible two component mixtures
is an example of of extending Bogoliubov analysis to study problems involv-
ing non-equilibrium dynamics. Other problems where similar formalism has
been applied to analyze experiments experiments include sudden changes in the
scattering length, dynamics of spinor conensates with dipolar interactions, RF
slicing of one dimensional condensates.

4.2 F = 1 spinor condensates

4.2.1 Microscopic Hamiltonian

In this section we consider spinor condensates in optical far-off-resonant traps,
which confine atoms regardless of their hyperfine state.

An F = 1 spinor condensate is described by a three component order pa-
rameter

~Ψ =

 Ψ1

Ψ0

Ψ−1

 (4.7)

When there is only contact s-wave interaction between atoms (this is again
an effective interaction appropriate for the low energy limit), it can be written
as

Vint = (V0Pf=0 + V2Pf=2)δ(~r1 − ~r2) (4.8)

Here Pf are projection operators for the total spin of the pair of atoms, Vf =
4π~2af/m, and af are the appropriate scattering lengths. Two identical F = 1
bosons can scatter with f = 0 or f = 2. Scattering with f = 1 is not possible
because the wavefunction of the pair is antisymmetric in both spin and orbital
parts.

For two F = 1 atoms there is an identity ~F1
~F2 = P2 − 2P0. With the help

of this identity the interaction potential can also be written as

Vint = (g0 + gs ~F1
~F2)δ(~r1 − ~r2)

g0 =
4π~2

3m
(2af=2 + af=0)

gs =
4π~2

3m
(af=2 − af=0) (4.9)
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The spin part of this interaction is called antiferromagnetic when gs > 0 and
ferromagnetic when gs < 0. F = 1 hyperfine state of 23Na atoms has antiferro-
magnetic interactions, and F = 1 hyperfine state of 87Rb atoms has ferromag-
netic interactions.

We can write the Hamiltonian of the system as

H =

∫
dr (

~2

2m
|∇Ψa|2 − pΨ†aF zabΨb + qΨ†a(F z)2

abΨb

+
g0

2
Ψ†aΨ†a′Ψa′Ψa +

g2

2
Ψ†a ~Fab ~Fa′b′Ψ

†
a′Ψb′Ψb) (4.10)

Here ~Fab are spin operators. In the basis of Zeeman eigenstates which we use,
F zab = aδab and (F z)2

ab = a2δab. z-component of magnetization is a conserved
quantity of this Hamiltonian (it commutes with the hamiltonian) so when con-
structing phase diagrams, p should be thought of as a Lagrange multiplier which
controls F z. However, when one deals with spatially inhomegneous systems, in
which magnetic field varies in space, one needs to recall that p(r) = gµbH(r).
The origin of the quadratic Zeeman effect is that magnetic field primarily couples
to an electron spin, whereas we describe states using hyperfine spins, which are
mixtures of electron and nuclear spins, mixed by the hyperfine interaction (re-
call discussion of atomic states in chapter ??). Quadratic Zeeman effect causes
the energy of mF = 0 state to be lower than the energy of mF = ±1 atoms
(more accurately, the energy of two mF = 0 atoms is lower than the energy of
mF = +1 and mF = −1 pair). For 87Rb and 23Na q = q̃H2 where q̃ = h390
Hz/G2. Somewhat surprisingly we find that magnetic field is primarily used to
control the strength of quadratic Zeeman coefficient whereas the linear Zeeman
term should be thought of as determined by the prepared magnetization of the
system. It is also worth noting that it is possible to create effective negative
Zeeman coefficient using an AC Stark effect.

We assume that all atoms are condensed into the same state and consider
mean-field energy

Espin = −pFz + q〈(F z)2〉+ g2〈~F 〉2 (4.11)

The first term comes from the linear Zeeman effect. The second term in (4.11)
comes from the quadratic Zeeman term. The last term in (4.11) comes from
spin dependent part of the interactions.

The antiferromagnetic interaction gs > 0 favors nematic (polar) state: |mF =
0〉 or its rotations. Atoms in such state do not have expectation values of any

of the spin component 〈~F 〉 = 0. However spin symmetry is broken (by selecting
eigenstates with zero eigenvalue some direction in spin space). Such state can
be characterized by the nematic order parameter

Qab =
1

2
(FaFb + FbFa)− 1

3
δabF

2 (4.12)

which breaks spin rotational symmetry but not time reversal symmetry.
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4.2.2 Mean-field phase diagram

Non-interacting case

We start by considering the case of no spin interactions. In this case we have
level crossings determined by single particle states. For large positive p the
system favors mF = +1 state, for large q the system favors mF = 0 and there
is a first order transition line between the two. Analogously there s a transition
between mF = −1 and mF = 0 states for negative p. This phase diagram is
shown in fig. 4.5.

Ferromagnetic case

The ferromagnetic interaction gs < 0 favors spin polarized state: |mF = +1〉 or
its rotations. In this case we no longer have direct transitions between different
eigenstates of Fz, but there is an intermediate region that has a mixture of all
three states. Such mixture allows to lower the interaction energy by developing
a transverse spin magnetization (in the xy plane) even when it is not favorable to
have large longitudinal polarization (along the z-axis). Transitions between all
phases are continuous second order transitions. Phase diagram of ferromagnetic
spinor condensates is shown in fig. 4.6.

Antiferromagnetic case

Antiferromagnetic interactions favor a system to become an eigenstate of ~n~F
operator with eigenvalue zero for any direction of the vector n, which we can
refer to as direction of the nematic order (we call it nematic because n and −n
are the same). The first effect of such interaction is to favor mF = 0 state,
which is already favored by the quadratic Zeeman term. A more subtle effect of
antiferromagnetic interactions is to stabilize a mixed phase for small values of p
and q, which has a mixture of +1 and −1 states. This phase has nematic order
in the xy plane and helps to lower the interaction energy. Phase diagram of
nematic spinor condensates is shown in fig. 4.7. Note that there is still a direct
first order transition between mF = 0 and mF = ±1 states for large quadratic
Zeeman shifts.

4.2.3 Exeriments with F = 1 spinor condensates

Experiments verifying the phase diagram of spinor condensate with AF interac-
tions have been done by Stenger et al. [6]. By applying a magnetic field gradient
they made a system with a finite range of Zeeman fields. Phase diagram could
be checked by observing the distribution of different spin components inside the
trap (see figs 4.8, 4.9).

Another approach to studying the phase diagram of the ferromagnetic in-
teractions in 87Rb has been pursued by Sadler et. al. [7]. They started by
preparing a condensate ground state in the large magnetic field and with net
magnetization zero. This corresponds to a condensate of mF = 0 state. Then
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magnetic field was quickly lowered on the time scale that was too short for any
dynamics of cold atoms to take place. Such experiments, where one or several
parameters of the system are suddenly changed, are called quench experiments.
After quenching the magnetic field Sadler et. al. had a system that was still
a condensate of mF = 0 atoms, although the microscopic Hamiltonian was al-
ready such that the system in the ground state should be a mixture of mF = ±1
states. There are two ways to understand dynamics of the system following such
quench. One approach is to calculate collective modes and observe that they
have imaginary frequencies, indicating that the system is unstable towards ex-
ponential growth of fluctuations (see [18] and problem 4 in this Section). This
is very similar to the analysis we did in the case of two component mixtures.
By looking at the wavevector of the most unstable modes one can predict the
size of domains. Another view on this dynamics is to observe that in the final
state the system favors developing ferromagnetic order in the XY plane, i.e.
spontaneous breaking of the symmetry of spin rotations around the z axis. On
the other hand, initial state does not have any transverse magnetization. Initial
state is fully symmetric with respect to U(1) rotations generated by Fz. Follow-
ing the quench the system starts forming domains of transverse magnetization
but magnetization directions differ in different points in space (see fig. 4.10).
This leads to a state with random domains of transverse magnetization and the
lengthscale of domains is set by the most unstable modes.

One possible extension of these types of experiments is to change the mag-
netic field at a finite rate, rather than suddenly. A general setting in which
a continuous second order phase transition is crossed dynamically (but not in-
stantaneously) from a state without symmetry breaking into a state with spon-
taneous symmetry breaking is often called Kibble-Zurek mechanism of domain
formation. In such experiments one expects that a typical size of domains de-
pends on the rate at which the transition is crossed. The faster is the crossing
(less adiabatic), the smaller is the resulting domain size. A scaling argument
predicts the relation between domain sizes and the rate[17]. Let Hc be the crit-
ical value of the magnetic field for which we expect a transition from the XY
unordered to the XY ordered state, and let us define g = H −Hc. Second order
transitions are characterized by the correlation length that should diverge at
the transition ξ ∼ |g|−ν . Dynamical critical exponent z relates lengthscales to
timescales ∆ ∼ Lz ∼ |g|zν . In our case z = 1 since in the easy plane ferromag-
netic phase we have spin waves with linear dispertion. Energy scale ∆ sets the
gap to spin excitations in the disordered side and the energy of fluctuations of
the magnitude of the order parameter on the broken symmetry side. As H(t)
is being changed, one can roughly separate adiabatic regime when ∆̇/∆2 << 1
and antiadiabatic regime when ∆̇/∆2 >> 1. To understand this condition think
of the Lanadau-Zener problem or the problem of dynamically changing param-
eters of a harmonic oscillator. Far from the transition ∆(t) large, dynamics is
adiabatic, i.e. the system can adjust itself to the changes of parameters. In the
antiadiabatic regime, i.e. very close to the transition, the system can no longer
follow changes in g. In this regime the system has very low energy modes, for
which changes of the microscopic Hamiltonian are better treated as quenches.
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So one can take a simplified perspective that in the entire antiadiabatic regime
the wavefunction remains ”frozen”. Then the correlation length of the order
parameter is simply the correlatin length ξ at the point when system dynamics
changed from adiabatic to anti-adiabatic. For simplicity, let us consider g = Ct,
where t is time, so that ∆(t) = C̃tzν . Transition from adiabatic to antiadiabatic

regime takes place when C̃−1t
−(zν+1)
∗ ∼ 1. At the transition point ξ∗ ∼ C̃−

ν
zν+1 .

This equation makes a prediction (not yet verified experimentally) for the do-
main size resulting from non-adiabatic crossing as a function of the rate of
change of the magnetic field[17, 14] . It is worth mentioning that interesting
analogies exist between questions of quench and Kibble-Zurek dynamics in cold
atoms and problems of inflation and cosmology[11]. It is also possible to develop
a more general theory that combines analysis of final state unstable modes and
dynamics of changing microscopic parameters at a finite rate [14].

4.3 Beyond mean-field approximation

Let us now discuss the nature of S=1 ground states beyond the mean-field
approximation. Let us assume that all particles are in a state of the lowest
kinetic energy, but they can still have spin degrees of freedom. Taking the trap
to be a box of size L3 with periodic boundary conditions (this assumptions is
not important and in a more realistic case L is replaced by the size of the ground
state wavefunction), we can rewrite the Hamiltonian

Hreduced =
g0

2L3
N2 +

gs
2L3

~̂F 2
tot (4.13)

Here N is the total number of atoms and ~̂Ftot is the operator of the total spin.
There is a symmetry constraint that the allowed values of Ftot should have the
same parity as the number of particles. This constraint arises from the condition
that the spin part of the wavefunction must be symmetric under the exchange
of any pair of atoms (the orbital part is symmetric since all atoms are assumed
to be in the same orbital state).

When gs < 0 the ground state has Ftot = N . This is the same ferromagnetic
state we have seen in the mean-field analysis.

When gs > 0 the ground state should have Ftot = 0 (assuming N is
even). The question then arises how to reconcile this statement with the ne-
matic state state obtained in the mean-field, which canbe written as |Ψnem〉 =(
a†mF=0

)N
|vac〉. Again we need to appeal to spontaneous symmetry breaking.

The state |Ψnem〉 does not have a well defined Ftot, so it is not a true eigenstate
of the Hamiltoian and the direction of the nematic order should oscillate in
time. The timescale of these oscillations is set by the difference of Ftot = 0 and
Ftot = 2 eigenstates T ∼ ~

∆E20
. From equation (4.13) we have

∆E20 =
3gs
2L3

=
3gsn

N
(4.14)
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where n = N/L3 is the density of particles. If we take thermodynamic limit
while keeping gsn fixed (this is the energy scale proportional to the chemical
potential µ = g0n), we find that T becomes very long in the large N limit.
Hence oscillations of the nematic order parameter can be neglected in this case.
To observe the true spin single nature of the spin ground state with antiferro-
magnetic interactions, it is important to take mesoscopic systems, in which the
number of particles is not too large.

4.4 Magnetic dipolar interactions

Magnetic dipolar interactions are given by

Vmag. dip = − µ0

4πr3
12

(3(~m1~e12)(~m2~e12)− ~m1 ~m2) (4.15)

Here ~e12 is a unit vector parallel to the line joining the centers of the magnetic
moments, r12 is the distance between the two moments, and m1,2 are individual
magnetic moments. We recall that contact interactions are given by Vcontact =
(4π~2/m) δ(r1 − r2). To understand the strength of dipolar interaction we take
r12 to be of the order of a typical interatomic distance n0r

3 ≈ 1. As an estimate
of the strength of contact interaction we take chemical potential from equation
(??). Then the ratio of the two interactions is given by

ε ∼ Vmag. dip

Vcontact
=

µ0µ
2m

12π~2as
(4.16)

Note that this ratio does not depend on the density. Typically as ∼ 100 aB . For
87Rb µ = µB and ε = 0.007. So dipolar interactions are less than one percent
of the typical contact interactions. For 52Cr µ = 6µB and ε = 0.16. Several
beautiful experiments demonstrating magnetic dipolar interactions in Cr have
been performed by T. Pfau’s group (see [2, 10] for reviews).

It was argued magnetic dipolar interactions should be important for 87Rb
as well. It turns out that spin dependent part of the interaction is extremely
small a2 − a0 = −1.02aB . With spin dependent interactions being so weak,
dipolar interactions become important in determining the spin structure of the
condensate. Spontaneous formation of spin textures resulting from magnetic
dipolar interactions have been reported by D. Stamper-Kurn’s group [5, 9].
Later experiments by the same group, however, did not confirm these results.

It is also possible to switch off contact interact interactions using Feshbach
resonance, then the only interaction term left will be magnetic dipolar interac-
tions. This was explored in experiments in [8].

4.5 Spinor superfluids with higher spins

There are reasons to consider spinor superfluids with even larger spins. For
example, both 87Rb and 23Na have F = 2 states, and 52Cr atoms have S =
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3. One of the difficulties of analyzing high spinor condensates is that many
parameters needed to specify wavefunctions make their interpretation not very
transparent. To specify the spin state of an S = 1/2 particle it is sufficient
to specify direction of its spin (direction on the Bloch sphere). This fixes the
wavefunction up to the overall phase factor. For F = 1 representation of the
state in terms of the direction of the spin is applicable only for fully polarized
states. A nematic state, such as mF = 0 state, can not be represented by the
direction of its spin polarization, since it has no expectation values of the spin
operators. Majorana classification scheme, which we discuss in this section, is
identifying states of spin F particles with 2F points on a sphere[1].

4.5.1 Majorana representation

Consider a particle of spin F in a state given by

|ψ〉 =

m=+F∑
m=−F

Am|m〉 (4.17)

Here Am are a set of normalized complex coefficients and states |m〉 are eignes-
tates of the Fz operator Fz|m〉 = m|m〉. The idea is to find a set of maxi-
mally polarized states, which are orthogonal to |ψ〉. The maximally polarized
state |ζ〉 pointing in the direction ~n = (θ, φ) is determined by the equation

(~n~F ) |ζ〉 = F |ζ〉. A convenient (not normalized) representation of the polarized
state |ζ〉 is

ζ〉 =

2F∑
α=0

√(
2F
α

)
ζα|F − α〉 (4.18)

Here ζ = eiφ tan( θ2 ) is the stereographic mapping of the unit sphere to the
complex plane. To understand equation (4.18) one can recall that state |ζ〉
can be constructed by taking 2F spin 1/2 particles pointing in the direction
~n (experts in quantum magnetism can recognize the idea of Schwinger bosons
here). Corresponding states of S = 1/2 particles are

|ζ〉 1
2

= e−iφ/2 cos θ/2| ↑〉+ eiφ/2 sin θ/2| ↓〉 (4.19)

Writing a product of 2F of such states (symmetrization is automatic since we
assume all bosons to be in precisely the same state)

|ζ〉 1
2
. . . |ζ〉 1

2
= (e−iφ/2 cos θ/2| ↑〉+ eiφ/2 sin θ/2| ↓〉) . . . (e−iφ/2 cos θ/2| ↑〉+ eiφ/2 sin θ/2| ↓〉)

(4.20)

in terms of the components of the total spin, we arrive at formula (4.18).
We define the characteristic polynomial for |ψ〉 in ζ to be

fψ(ζ) = 〈ψ|ζ〉 =

2F∑
α=0

√(
2F
α

)
A∗F−αζ

α (4.21)
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The values of the 2F complex roots of fψ(ζi) = 0, which are in correspon-
dence with sets of points on the unit sphere, determine the coefficients Am and
therefore |ψ〉 up to normalization factor[1].

Majorana, representations of states of F = 1 atoms that we discussed before
are shown in fig. 4.11. Majorana representations of possible states of F = 2
atoms are shown in fig. 4.13

4.5.2 F = 2 atoms

Phase diagram for F = 2 bosonic atoms is shown in fig. 4.12. Note that mean-
field analysis is not sufficient to remove all degeneracies on the phase diagram.
States of the form ( sin η√

2
, 0, cos η, 0, sin η√

2
) are degenerate at the mean-field level

for any value of η. One needs to include fluctuations to understand the precise
character of the nematic states[21]. Nonequilibrium spin dynamics of F = 2
states of 87Rb atoms has been studied experimentally [19, 13] although the
ground state properties have not been explored in experiments yet.

4.5.3 F = 3 atoms

Phase diagram for F = 3 bosonic atoms is shown in figs. 4.14, 4.15. Spin
dynamics of S=3 52Cr atoms has been studied experimentally by Pasquuiou et
al.[16]. Dipolar interactions are expected to play a major role in the dynamics
of Cr atoms and complete understanding of these experiments is still lacking.

4.6 Problems for Chapter 4

Problem 1
Consider two component Bose mixture with the Hamiltonian (4.1). Assume

all Uij > 0. Derive T = 0 phase diagram as a function of µ{1,2} in the mean-field
approximation. Discuss relation to phase diagrams at fixed densities.

Problem 2
Starting with the two component linearized GP equations in (4.5), obtain

the dispersion of colletive modes.

Problem 3
Consider F=1 spinor condensate with the Hamiltonian (4.10). Obtain the

equilibrium phase diagrams as a function of p and q. Consider separately cases
with gs < 0 and gs > 0.

Problem 4
Consider F = 1 spinor condensate with ferromagnetic interactions: gs < 0 in

(4.10). Assuming that all atoms are in the mF = 0 state, calculate the spectrum
of Bogoliubov excitations. Identify charge and spin modes. Discuss conditions
for spin modes to have imaginary frequencies and compare to the equilibrium
phase diagram. Such quench experiment has been done by Sadler et al. [7].
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Figure 4.1: Phase diagram that corresponds to the miscible regime of two com-
ponent Bose mixture.
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Figure 4.2: Phase diagram that corresponds to the immiscible regime of two
component Bose mixture.
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Figure 4.3: Collective modes for a two component uniform mixture in the im-
miscible regime. Negative values of ω2 correspond to unstable modes. Dominant
instability has the largest imaginary frequency and is marked with q∗.
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PRL 82:2228 (1999)

Figure 4.4: Spontaneous formation of spin domains. An overlapping |mF =
0, 1〉 mixed condensate of Na was prepared at 15G. After about 50 ms domains
started to form with a lengthscale of ≈ 40 µm. The |mF = 0〉 and |mF = 1〉
states were separated during the expansion for imaging. Fig. taken from [20].
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Figure 4.5: Phase diagram of F = 1 spinor condensates for gs = 0.

Figure 4.6: Phase diagram of F = 1 spinor condensates for ferromagnetic in-
teractions, gs < 0. Shaded regions are a mixture of all three states. There is a
finite expectation value of the total spin in the XY plane.
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Figure 4.7: Phase diagram of F = 1 spinor condensates for antiferromagnetic
interactions, gs > 0. Shaded regions are a mixture of |mF = −1〉 and |mF = +1〉
atoms. Mixing |mF = ±1〉 states lowers the interaction energy.
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Fig. 22. Representation of ground–state spin–domain structures of Fig. 21 on the spin–domain diagram. The

spin structures shown in Fig. 21a and b correspond to long vertical lines through the spin–domain diagram,

centered at p = 0 to correspond to an average spin 〈Fz〉 = 0. (a) At low magnetic field q < c and mixed–spin

domains are introduced. (b) At higher fields, they are absent. (c) Lowering the gradient focuses on a small

portion of the diagram in which a cloud of non–zero spin consists of overlapping mF = ±1 components.

Figure 4.8: Using magnetic field gradient to explore the phase diagram of F = 1
spinor condensates with antiferromagnetic interactions, gs > 0. The bar shows
a range of Zeeman fields inside the trap due to magnetic field gradient. Distri-
bution of different spin components measured experimentally for such systems
is shown in fig. 4.9. Figure taken from [3].
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Figure 4.9: Experimental results corresponding to set-ups in fig. 4.8. Figure
taken from [6]. Case a): Mixtures of states ±1 are at the edges, state 0 is at
the center of the trap. Case b): State +1 at one end, state −1 at the opposite
end of the trap, state 0 in the center of the trap. Case c): Mixture of ±1 states
everywhere. Experimentally measured distributions of magnetic states are in
qualitative agreement with the phase diagram in fig. 4.7.

Figure 4.10: Magnetic domains in ferromagnetic F = 1 condensate resulting
from sudden change of magnetic field from large H values to small ones. Figure
taken from [7]. System develops transverse magnetization but orientations are
not perfectly correlated. The same phenomenon can be analyzed by considering
unstable collective modes[14, 18].
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Figure 4.11: Majorana representation of states of F = 1 atom. Figure taken
from [12]. Ferromagnetic state corresponds to a single doubly degenenerate
point. Nematic (polar) state corresponds to two points at the opposite ends of
a sphere.

Figure 4.12: Phase diagram of F = 2 atoms from. Geometrical shapes de-
scribe Majorana repesentations of the appropriate states. Domains of stabil-
ity of various nematic states were obtained by including energy of quantum
fluctuations[21].
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Figure 4.13: Majorana representation of states of several types of states F = 2
atom. Figure taken from [12]. Not all of these states shown here correspond to
ground states for some choice of interaction constants. See fig. 4.12.
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Figure 4.14: Phase diagram of F = 3 atoms from [12]. Here Cα = 1
7 (10a6 −

21a4 +11a0), Cβ = 1
7 (7a6−18a4 +11a2), and Cγ = a6−a4. case a) corresponds

to Cγ > 0 and case b) to Cγ < 0. Majorana repesentations of the appropriate
states are given in fig4.15.
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Figure 4.15: Majorana representation of states from the phase diagram 4.14.
Figure taken from [12]. Note that all the states shown have some residual
symmetry.



Bibliography

[1] Ryan Barnett, Ari Turner, and Eugene Demler. Classifying Novel Phases
of Spinor Atoms. 180412(November):1–4, 2006.

[2] A. Griesmaier et al. arXiv:cond-mat/0508423, 2005.

[3] D. Stamper-Kurn et al. Phys. Rev. Lett., 83:2876, 1999.

[4] H.J. Miesener et al. Phys. Rev. Lett., 82:2228, 1999.

[5] H.J. Miesener et al. Phys. Rev. Lett., 100:170403, 2008.

[6] J. Stenger et al. Nature, 396:345, 1998.

[7] L.E. Sadler et al. Nature, 443:312, 2006.

[8] M. Fattori et al. Phys. Rev. Lett., 101:190405, 2008.

[9] M. Vengalattore et al. arXiv:0901.3800, 2009.

[10] T. Lahaye et al. Rep. Prog. Phys., 72:126401, 2009.

[11] Vladimir Gritsev and Anatoli Polkovnikov. Universal Dynamics Near
Quantum Critical Points. In Developments in Quantum Phase Transitions,
pages 1–19.

[12] Yuki Kawaguchi and Masahito Ueda. Symmetry Classification of Spinor
Bose-Einstein Condensates. pages 1–19, 2011.
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